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SUMMARY

Annular pressure-tooling extrusion is simulated for a low density polymer melt using a Taylor–Petrov–
Galerkin <nite element scheme. This represents industrial-scale wire-coating. Viscoelastic �uids are
modeled via three forms of Phan-Thien=Tanner (PTT) constitutive laws employed for short-die and full
speci<cation pressure-tooling. E=ects of variation in Weissenberg number (We) and polymeric viscosity
are investigated. Particular attention is paid to mesh re<nement to predict accurate results. The impact of
variation in shear-thinning and strain-softening properties is considered upon the modelling predictions.
For the short-die �ow, the in�uence of the lack of strain softening is identi<ed. For the full-die �ow and
more severe deformation rates, the linear PTT model failed to converge. In contrast, the exponential
PTT model is found to be more stable numerically and to adequately re�ect the material response.
Comparing short-die and full-die pressure-tooling results, shear rates increase 10-fold, while strain rates
increase one hundred times. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This study covers the numerical simulation of complex �ows, highly viscoelastic in nature,
which occur during industrial wire-coating processes. Typically, pressure-tooling and tube-
tooling are two distinct die designs applied in the coating process. For thinly coated (narrow-
bore) wires, pressure-tooling is employed, where the wire-coating process begins within the
die cast. On the other hand, tube-tooling relies on draw-down e=ects resulting from contact
between wire and polymer melt outside the die, to produce thick (wide-bore) cable coatings.
This article concentrates on the pressure-tooling design.

Wire-coating, in the pressure-tooling context, constitutes a process of two �ow regimes: a
shear dominated �ow within an annular die, and an extension-dominated �ow along the wire-
coating region beyond the die. Injection of the molten polymer into the tooling die establishes
a pressure driven �ow. Contact between the molten plastic tube and the wire is made within
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the die, where the travelling wire induces a drag �ow, drawing out the polymer melt to form
a sheath around the cable. Coating production lines for narrow-bore wire use relatively high
speeds, around 1 m s−1, and the deposition of the �uid on a rigid moving wire is treated as
a free surface problem. Coverage of this problem, background and the literature is provided
below.

In our past work [1] with <xed surfaces, we have adopted di=erential viscoelastic mod-
els, such as the exponential Phan-Thien=Tanner (PTT) model. This permitted us to predict
stress development, based upon the recommendations proposed in Binding et al. [2] (see
Section 2). There, state-of-the-art <nite element (FE) techniques are required to cope with the
high deformation rates encountered and associated high Weissenberg numbers, of the order
102 to 104. Previous predictive methods of this sort are represented in References [3–7]. For
Newtonian viscous �ows, a semi-implicit Taylor–Galerkin=pressure-correction procedure was
used by the present authors [8] for solving wire-coating �ows, pressure-tooling and tube-
tooling, both with and without slip conditions imposed within the die.

With the inclusion of free surfaces, our earlier work on model problems addressed stick-
slip and die-swell �ows, see References [9] and [10]. There, attention was focused on the
e=ects of drag �ow for Newtonian planar and axisymmetric �ows [9], in contrast to the
background theory. Likewise, a second article [10] extended this work to embrace viscoelastic
�ows with an Oldroyd-B model representation. Stress stabilization is performed by invoking a
streamline upwind Petrov–Galerkin (SUPG) technique, in conjunction with a recovery method
for velocity gradients. The present study goes further in two directions: incorporating more
physically realistic constitutive models (PTT) and in addressing industrially relevant pressure-
tooling die designs. Free surface schemes are implemented as in References [8–10], to model
the extrudate �ow. Our aim in this investigation is to provide a comparative study of shear-
thinning and strain-softening properties, detecting their respective in�uence upon the �ow
<elds generated. In this respect, we employ linear, quadratic and exponential PTT models. As
a by-product, we are able to isolate the underlying properties that dictate smooth numerical
solutions, and those that lead to premature numerical divergence. Flows are analysed under
creeping conditions in a two-dimensional annular coordinate setting.

2. BACKGROUND ON WIRE-COATING

Computational and experimental studies are reported widely in the literature for wire-coating
�ows. In the modelling work, assumptions taken (see Mutlu et al. [5]) include incompress-
ibility for the coating, concentricity of the wire, isothermal conditions and wire-speeds of
up to 1 m s−1. The most popular approach has been to adopt <nite element discretization for
two-dimensional annular systems. Both die designs of pressure and tube-tooling are discussed,
with emphasis upon pressure-tooling, unless otherwise stated.

Tadmor and Bird [11] considered the problem of a wire travelling on an axis parallel, but
not co-linear to the die. Since the wire was centred with a guider before entering the die,
and the wire was under high tension, the problem is more ideal than practical. Their work
con<rmed that concentricity is restored by the net lateral forces, and this lends to additional
justi<cation to a concentric �ow assumption.

Recent attention by a number of authors has focused on the numerical simulation of
pressure-tooling �ow for viscous �uids, such as those of Caswell and Tanner [12], Pittman and
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Rashid [13], Mitsoulis [14], Mitsoulis et al. [15], and Wagner and Mitsoulis [16]. Their work
dealt mainly with shear �ow under both isothermal and non-isothermal conditions. Molten
polymers have been noted to exhibit highly elastic behaviour when subject to large defor-
mation [11]. Only recently, numerical techniques have proven capable of reaching solutions
for suKciently high and relevant levels of elasticity: some limited attempts include those of
References [12] and [17]. Many others have involved either lubrication or inelastic approxi-
mations to address these shortcomings [12; 15; 18–20].

A whole �ow <eld analysis, regarded as a benchmark in wire-coating analysis, was pre-
sented by Caswell and Tanner [12]. This involved an isothermal FE study, without the use
of a lubrication approximation. Some interesting <ndings emerged, including the formation of
recirculating regions and the free surface determination at the die-exit. The majority of their
analysis dealt with inelastic power-law and Newtonian �uids.

A theoretical and experimental investigation of power-law �uids in the wire-coating process
was proposed by Han and Rao [19]. Both tube and pressure-tooling designs were discussed.
The wire speeds used were, however, lower than typically encountered in industry. Increasing
wire-speed subsequently e=ects the reduction of axial pressure gradient and recoverable elastic
strain within the molten polymer at the die-exit.

Carley et al. [21] performed a non-isothermal �ow analysis for conical and cylindrical dies.
Although their energy equation did not include the radial convection term, they were able to
model the melt rheology involved reasonably well for a wide range of shear rates.

A high-speed wire-coating study was performed by Chung [22], obeying the Spencer–
Gilmor equation of state. An FE model was used with a lubrication approximation in a
cylindrical system. The analysis made apparent the importance of taking material compress-
ibility into account, beyond speci<c wire speeds, and its e=ect upon the <nal wire-coating
for power-law �uids. In such a context, the authors advocated care at wire speeds exceeding
0:5 m s−1, with respect to the issue of compressibility.

Mitsoulis [14] studied the wire-coating �ow of power-law and Newtonian �uids. The FE
analysis indicated that for realistic predictions, it was necessary to capture the features in
the modelling of normal stress, temperature-dependent viscosity, and other material proper-
ties. Also, Mitsoulis concluded that the inclusion of shear-thinning reduced the (small) levels
of die-swell at the die-exit, as well as the recirculation that occurred within the die. In
a subsequent article, Mitsoulis et al. [15] provided a detailed numerical investigation into
high-speed industrial wire-coating. Two �ow formulations were used: a planar FE analysis
for non-isothermal �ows, and a lubrication approximation for isothermal, power-law �uids.
The latter form was found to yield the better �ow predictions. The non-isothermal pres-
sure solution was found to be in good agreement with the experimental results of Haas and
Skewis [23].

The predictions of Binding et al. [2] made apparent the inadequacy of inelastic models
in the accurate modelling of stress and pressure drop throughout the process. These authors
made use of inelastic modelling techniques for a pressure-tooling �ow, to investigate the
mixed extensional-shear �ow behavior of low-density polyethylene melts. A range of vis-
cous models were contrasted, from pure shear models, to mixed and pure extensional mod-
els, referencing the stress and pressure <elds generated. Recommendations were made for
the accurate prediction of residual stresses in the melt coating, commending a viscoelastic
analysis to account for the in�uence of short residence times of the particles within the
�ow.
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For tube-tooling �ows and <xed free-surface estimation, we have conducted single-mode
PTT simulations in Mutlu et al. [4; 5] and Matallah et al. [24]. Using the Taylor–Galerkin=
pressure-correction procedure as identi<ed above, tube-tooling was analysed in sections in
Mutlu et al. [5], isolating draw-down �ow and studying the e=ects of stress pre-history
and various boundary conditions. This led to a further study on coupled and decoupled
solution procedures for a range of model �uids, approaching those of industrial relevance.
In Matallah et al. [24], single-mode model calculations were compared to those of multi-
mode type for LDPE and HDPE grade polymers. The multi-mode computations revealed the
dominant modes of most signi<cance in the process and gave insight as to the levels of
residual stress in the resultant coatings. Further work on multi-mode modelling of Matallah
et al. [1], emphasized the in�uence of die-design on optimal process setting. Three, as op-
posed to seven modes, were found adequate to suKciently describe the �ow. The draw-down
residence time, which dictates the dominance of certain modes within the relaxation spec-
trum, was found to be the primary factor to in�uence the decay of residual stressing in the
coating.

It is upon this basis that we undertake the present study, focusing upon pressure-tooling
die-design and the inclusion of free surface movement. Variation in �ow response as a con-
sequence of material rheology is of particular interest.

3. GOVERNING EQUATIONS

In this work, Phan-Thien=Tanner models [25; 26] are selected for being more physically real-
istic than say, the constant shear viscosity Oldroyd-B model. The non-dimensional constitutive
equation for a generalized PTT model can be written in the general form:

We�t = 2�1D − f�+ We{� · ∇U + (∇U)† · �−U · ∇�+ �[D · �+ (D · �)†]} (1)

where

T= �+ 2�2D (2)

� = �1 + �2 (3)

D= 1
2(∇U + ∇U †) (4)

Here, � is the polymeric component of the extra-stress tensor T ; D is the rate of deformation
tensor, U is the velocity vector, We is a Weissenberg number (see below), �1 and �2 are
polymeric and solvent viscosity, superscript † denotes matrix transpose, ∇ is the gradient
operator, T is the extra-stress tensor and p is pressure. The function, f, speci<es the various
versions of this class of models, namely as:

linear model: f=1 +
�We
�1

trace(�) (5)
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quadratic model: f=1 +
�We
�1

trace(�) +
1
2

[
�We
�1

trace(�)
]2

(6)

exponential model: f= exp
[
�We
�1

trace(�)
]

(7)

where model parameters � (�¿0) and � (06�62) are non-dimensional characteristic �uid
parameters that can be evaluated by <tting to the experimental data. The Oldroyd-B model is
recovered when f = 1, � and � vanish.

Such PTT model variants may display a wide variety of shear-thinning and strain-softening
behaviour. With the above constitutive equation of state (1), we must couple the asso-
ciated equations for mass conservation and momentum transport to de<ne the governing
system. Hence for incompressible, isothermal �ow, in the absence of body forces, we
have:

∇ ·U = 0 (8)

ReUt = ∇ ·T − ReU · ∇U −∇p (9)

The complete system is de<ned via Equations (1), (8) and (9).
Non-dimensionalization of the governing equations requires scales for velocity of U for

the wire-speed, L for coating length, [(L)=(U )] for time, [(�U )=(L)] for stress and pressure.
The viscosity � is made up of the polymeric viscosity �1 (vanishes for Newtonian �uids)
and solvent viscosity �2, where �=�1 +�2. The non-dimensional Reynolds number is de<ned
as Re= [(
UL)=(�)], and Weissenberg number as We= [(U�1)=(L)], where 
 denotes �uid
density, and �1 an averaged relaxation time.

The PTT models, such as those described by Bird et al. [27], are here referred to as
PTT (�; �; �1). Then, as a special case, the Oldroyd-B model (constant viscosity) is given as
PTT (0; 0; �1). The material parameters that control shear and elongational properties of the
�uid are � (for �¿0) and � (where 06�62), respectively.

4. NUMERICAL SCHEME

4.1. Discretization

The system of governing equations for stress, conservation of mass and transport of momen-
tum, as mentioned above (see Equations (1), (8) and (9)), with inclusion of appropriate initial
and boundary conditions, is solved by a Taylor–Petrov–Galerkin-pressure correction <nite el-
ement scheme (as commended by Matallah et al. [1] and Carew et al. [28]). The procedure
involves a fractional-staged approach to solve the primary velocity, pressure and stress vari-
ables of the system, with incorporation of a time stepping scheme to enable calculation of
complex �ow stationary solutions in viscoelastic �uids. The time-stepping scheme includes a
semi-implicit treatment for the momentum equation to avoid restrictive viscous stability con-
straints. Solution of each fractional-staged equation is accomplished via an iterative solver.
That is, with the exception of the temporal pressure-di=erence Poisson equation, which is
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solved through a direct Choleski procedure. The computational eKciency of this procedure
for wire-coating is dealt with elsewhere [4].

The semi-implicit Taylor–Galerkin=pressure-correction method may be presented in semi-
discrete temporal format as:

Stage 1a:

2Re
Ot

(U n+ 1
2 −U n) = [∇ · (2�2D+ �) − ReU · ∇U −∇p]n + ∇ ·�2(Dn+ 1

2 −Dn)

2We
Ot

(�n+ 1
2 − �n) = [2�1D − f�−We(U · ∇�−∇U · �−∇U † · �)]n

Stage 1b:

Re
Ot

(U∗ −U n) = [∇ · (2�2D −∇p]n + [∇ · �− ReU · ∇U ]n+ 1
2 + ∇ ·�2(D∗ −Dn)

We
Ot

(�∗ − �n) = [2�1D − f�−We(U · ∇�−∇U · �−∇U † · �]n+ 1
2

Stage 2:

Ot
2Re

∇2(pn+1 − pn) =∇ ·U∗

Stage 3:

2Re
Ot

(U n+1 −U∗) =−∇(pn+1 − pn)

Above, n is the time step number and U∗ is a non-solenoidal vector <eld. The velocity and
stress components of Stage 1a are taken for a half time step (i.e., n+ 1

2), while for Stage 1b the
U∗ velocities and stresses are computed over a full time step (n+1). In combination, Stage 1
constitutes a predictor–corrector doublet. For full details upon this issue, see Reference [29].
This concludes derivation of stress components for a complete time step. Pressure di=erences
over this period are calculated from the Poisson equation (Stage 2), depending upon the
intermediate vector <eld U∗. Solution of this Poisson equation yields the solenoidal velocity
over a full time step, as shown in Stage 3. As reported by Carew et al. [28], no gain in
stability or accuracy is made by correction of the stress tensor at Stage 3, so this is omitted
here also. Spatial discretization of the domain P involves division into Ne elements, viz,

P =
Ne∑
e=1

Pe (10)
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The piecewise continuous basis functions are de<ned over two-dimensional triangular ele-
ments, with linear interpolation for pressure, and quadratic for velocity and stress:

(�rr; �rz ; �zz ; ���)n = (T j
1 ; T

j
2 ; T

j
3 ; T

j
4 )n�j

(Vr; Vz)n = (Uj; Vj)n�j

(p)n = (Pk)n k

The index k is associated only with vertex nodes, whilst index j relates to both vertex and
mid-side nodes.

The SUPG method is employed to cope with the highly elastic, convection dominated
nature of the constitutive equations, and to suppress streamwise noise in the discrete solution
(Carew et al. [28]). The high precision of the solution is maintained by suppressing cross-
stream discretization error through mesh re<nement and the use of multiple Jacobi iterations
(see Gunter et al. [3]). Recovery of velocity gradients within the constitutive equation also
enhances stability of the system.

Determination of time step (typically O(10−4)) is made on the basis of a Courant stability
constraint for all meshes. More detailed discussion on this scheme can be found in References
[3; 10; 28].

4.2. Free surface procedure

To determine the free surface position, we employ a modi<ed iterative free-surface location
method in this paper, following a similar approach to that which we have used previously
for Newtonian problems. In such a manner, the degree of extrudate swell in a viscoelastic
die-swell �ow may be determined. The following three boundary conditions apply at a free
surface, see Crochet et al. [30],

vrnr + vznz = 0 (11)

trnr + tznz = S
(

1

1

+
1

2

)
(12)

trnz − tznr = 0 (13)

where: S is the surface tension coeKcient, vr is the radial velocity, vz is the axial velocity,
the unit normal vector to the free surface is n= (nr; nz), principal radii of curvature vector is
(
1; 
2), and surface traction vector is t= (tr ; tz) =� · n with Cauchy stress �.

Conditions (12) and (13) are typically used as boundary conditions for iterative free surface
modelling. By calculating the normal velocity from Equation (11), the shape of the upper
extrudate boundary can be determined. At each position zi, the radial distance from the axis
of symmetry in the free jet �ow is given by:

R(z2) =R(z1) +
∫ ze

z1

vr
vz

dz (14)
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In this work, the integral in Equation (14) is evaluated by Simpson’s quadrature rule,
thus providing an estimate of the extrudate shape. This suKces present needs, though a more
sophisticated approach may be considered as warranted, see Reference [10]. The distance from
the axis of symmetry, within each element ei at axial position z, is represented below:

Rei(z2) =Rei−1(z1) +
∫
z

vei
r

vei
z

dz (15)

where, ∫
z

vei
r (z)
vei
z (z)

dz =
h
6

[
vei
r (iz − 2)
vei
z (iz − 2)

+ 4
vei
r (iz − 1)
vei
z (iz − 1)

+
vei
r (iz)
vei
z (iz)

]
(16)

for length of element, h= ziz − ziz−2; ei = ith element, and <nite element nodal velocity com-
ponents (vei

r ; vei
z )(iz).

The procedure of solution is as follows. First, the kinematics for a converged Newto-
nian solution are used as initial conditions with a relaxed stress <eld and the <xed free-
surface problem is solved. Subsequently, the full problem is computed, involving the free
surface calculation, where the surface location itself must be determined. Continuation from
one particular viscoelastic solution setting to the next is then employed. Also, we have
found it a useful ploy, with respect to stress stabilization for linear PTT modelling for
example, to enforce vanishing surface extra stress as a <rst approximation, to establish a
close estimate of the free-surface position. Once located, then surface stress may be
relaxed.

To satisfy the zero normal velocity, free surface boundary condition and to compensate
for the adjustment of the free surface, the die-exit nodal coordinates must be modi<ed. As a
result, the velocity solution at the new surface position must be reprojected from the previous
surface position. This is achieved by selecting two points (r1; z1) and (r2; z2) for each element
at the vertex and mid-side positions. Since the magnitude of the total velocity vtotal at the
boundary is the same for each element:

vtotal =
√

v2
r + v2

z (17)

The angle !, between the horizontal z and the boundary de<nes the free surface position:

!= tan−1
(
r2 − r1

z2 − z1

)
(18)

Lastly, updated values of velocity components v′r and v′z are calculated, viz,

v′r = vtotal sin(!)

v′z = vtotal cos(!)
(19)

5. SHEAR AND ELONGATIONAL BEHAVIOUR OF PTT MODELS

Most non-Newtonian �uids exhibit non-constant viscosity, for example, displaying shear-
thinning where the viscosity is a decreasing function of increasing shear rate. This is il-
lustrated in Figure 1 in pure shear. Figure 2 re�ects a similar set of plots, demonstrating
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Figure 1. PTT model: shear viscosity; (a) Exp PTT(1,0,0.88), (b) Exp PTT(�; 0; 0:99), We= 200,
(c) Exp PTT(1,0,�1), We= 200, (d) PTT(1,0,0.99), We= 200.
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Figure 2. PTT model: elongational viscosity; (a) Exp PTT(�; 0; 0:99), We= 200,
(b) PTT(1,0,0.99), We= 200.

the functional dependence of viscosity under increasing strain-rate in pure uniaxial extension
(extensional viscosity). The merits of the PTT model over the Maxwell model are highlighted
by Phan-Thien and Tanner [31], noting that the Maxwellian elongational viscosity goes in<-
nite at <nite strain rates. Under the parameter sets identi<ed in this study, linear versions of
the PTT model do not display signi<cant strain-softening properties. In contrast, by retaining
higher order terms of the Taylor series expansion, this property may be recaptured, with the
emergence of quadratic and exponential PTT models.

The shear and extensional viscosity functions, �s and �e, of the PTT model variants may
be expressed as a function of f itself via

�s(#̇) =�2 +
�1f

f2 + �(2 − �)�2
1#̇2

(20)

and

�e(�̇) = 3�2 +
2�1

f − 2(1 − �)�1�̇
+

�1

f + (1 − �)�1�̇
(21)

In pure shear, �s for the exponential PTT(1; 0; 0:88) model is charted for a range of We-
values, 16We6200, in Figure 1(a). The gradual drop in shear viscosity from a maximum
initial zero plateau to a second Newtonian level of −0:9 units is observed at all We-values.
The only discernable di=erence in behavior between We-values is the rate of change of shear
viscosity over the shear rate range 10−36#̇6102. This rate change increases with We, so
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that the most rapid corresponds to We= 200. Figure 1(b) illustrates the more rapid drop in
shear viscosity with increasing �-value: this provides greater shear-thinning properties. Such
a feature is incorporated in our short-die, pressure-tooling modelling by inclusion of a case
where �= 1. Shear viscosity pro<les in Figure 1(c) are plotted for �1-values, ranging from
0.88 to 0.995. The remaining parameters are taken as �= 1, �= 0 and We= 200. Typical
shear-thinning characteristics are observed, where shear viscosity drops from an initial value
of zero to a minimum of −2:3 units (for �1 = 0:995). In our <nite element computations
below, some short-die, pressure-tooling instances are implemented for �1 = 0:99, re�ecting
increased shear-thinning over �1 = 0:88, as well as enhanced numerical stability of conver-
gence over �1 = 0:995 (further evidence on this issue is given in the results section below). In
Figure 1(d), contrast in model variants is displayed, for the maximum We-value of 200 with
PTT(1; 0; 0:99). The parabolic drop due to shear-thinning is practically replicated for all PTT
models, falling from a <rst plateau of zero to a second at −2 units. The transition from linear
to exponential PTT is re�ected in a slightly more rapid drop to the global minimum and second
plateau.

Extensional viscosity pro<les of Figure 2 adopt the same parameter setting as those for the
pure shear plots of Figure 1. For a Newtonian �uid, at low strain rates the elongational viscos-
ity is three times the shear viscosity. Non-Newtonian polymer melts, such as represented by
the PTT(�; 0; 0:99) model at We= 200, produce non-monotonic elongational behavior, demon-
strating strain-hardening at low strain rates prior to strain-softening. Under variation in We
and for the same combination of parameters as for Figure 1(a), the elongational viscosity
adopts an almost identical pattern to that of the shear viscosity (hence not shown). Elonga-
tional viscosity levels are consistently three times larger than those of the shear viscosity.
Such rapid decline in viscosity at We= 200, re�ects industrial experience and calibrations.
A single (averaged) relaxation time, �1 = 2 s, is selected from data typical for this process
(see References [1; 2; 4]). With the associated velocity and length scales chosen, this yields
a maximum value of We= 200. Variation of extensional viscosity with the �-parameter is
charted in Figure 2(a). A number of theoretical investigations [32–34] have attempted to ra-
tionalize the build-up in elongational viscosity to a maximum (‘strain-hardening behaviour’),
followed by a decrease with increasing elongation rate. Some experimental studies [35; 36]
have speculated on the notion of ‘molecular entanglement’ [33] to explain this behavior. We
observe such a response in Figure 2(a) at low �-values for the exponential PTT model. The
temporary rise in elongational viscosity (a stretching e=ect), that occurs at low extension rates
prior to tailing o= at high extension rates, is associated with the non-linear exponential term
of the model. This paper uses the parameter set of �1 = 0:99, �= 0 and We= 200, unless
speci<ed otherwise. The model with �= 1 is considered an appropriate choice to suit present
requirements due to its monotonic strain-softening behavior. Strain-softening behavior with
variation in �1 (not shown), follows the shear viscosity pattern as of Figure 1(c). The more
appropriate value, to suit present circumstances, corresponds to the model with �1 = 0:99, due
to its combination of strain-softening and numerical stability attributes. The marked di=erences
in strain-softening properties for linear, quadratic and exponential PTT(1; 0; 0:99) models are
observed in Figure 2(b). Only relatively mild strain-softening is observed in the case of the
linear PTT model with this choice of parameters. The exponential PTT model demonstrates
the more extreme strain-softening behaviour, and is called upon to re�ect this position in our
short-die pressure-tooling work (as one might encounter, say, for an LDPE grade polymer
at 230◦C).
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Under general �ow conditions, there is need to record generalized shear and strain-rates,
that are de<ned via �ow invariants as, respectively:

#̇= 2
√

IId and �̇= 3
IIId
IId

(22)

where IId and IIId are the second and third invariants of the rate of strain tensor D. Such
quantities are represented as
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1
2
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(24)

6. PROBLEM SPECIFICATION

Two types of �ows are studied here, namely, a short-die pressure-tooling �ow, and a full-die
pressure-tooling instance. The primary aim of the <rst case is a preliminary investigation into
the �ow characteristics for pressure-tooling, without the inclusion of the full die complexity.
Aspects of particular interest include the interface from pressure-driven shear �ow to drawing
�ow, and the die-exit conditions. There is need to invoke a free surface location technique to
resolve the surface position and to examine the e=ects on the free jet drawing �ow (swelling
shape and ratio, '). This drawing �ow is responsible for the coating upon the lower moving-
wire boundary. Creeping �ow conditions (low Reynolds number of 10−4) are invoked for
both short and full-die pressure-tooling.

6.1. Short-die, pressure-tooling

Figure 3(a) illustrates the domain of consideration for this short-die annular pressure-tooling
�ow. Results for such a problem are computed on a relatively <ne mesh of 6× 24 ele-
ments, 637 nodes, 1449 degrees of freedom, with minimum element size of 0.0645 units
(Figure 3(c)). Mesh re<nement for this �ow follows our precursor work [10]. This model
problem is comparable to a classical die-swell �ow, but also involves an imposed drag �ow
due to the moving wire and a free jet �ow beyond the die. A fully developed pressure-driven
annular �ow is imposed at the inlet that provides the inlet �ow pro<le boundary conditions.
This <xes the �owrate throughout the die, with no-slip conditions pertaining at the die wall.
The moving wire at the lower boundary travels at a constant prede<ned speed. The location
of the free jet boundary surface is de<ned by a streamline, upon which vanishing traction
is assumed. A fully developed plug �ow prevails at the outlet. The characteristic velocity is
taken as the wire speed, the characteristic length is the inlet channel radius (that includes a
wire radius of 0.6 units).
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Figure 3. Schema for extrusion coating-�ows; (a) short-die pressure-tooling, (b) full-die
pressure-tooling, (c) mesh pattern, 288 elements, 637 nodes.

A Newtonian and three PTT model variants are implemented, of linear, quadratic and
exponential type. Various parameter ranges are investigated with We ranging from 1 to 200
(see above to Section 5), and �1 ranging from 0.88 to 0.995.

6.2. Full-case, pressure-tooling

The domain considered for the complete pressure-tooling �ow is represented in Figure 3(b),
upon which the meshes of Table I are constructed. This problem subsumes the short-die
�ow, covering the land region �ow (Z6Z7) and a short jet �ow zone (Z5Z6). Here, we
have an abrupt contact point between the moving wire and pressure-driven annular �ow that
occurs at position Z3 within the die. Wire conditions are assumed to apply at this point (see
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Table I. Full-die; <nite element meshes.

Mesh Element Total element Total node DOF

1. Uniform mesh 12× 74 1776 3725 8425
2. Biased coarse mesh 6× 114 1368 2977 6759
3. Biased medium mesh 10× 168 3360 7077 16 013
4. Biased <ne mesh 15× 127 3810 7905 17 858

References [2] and [8]). The extruded melt swells at the free boundary region Z5Z6, where
tractions vanish and the pressure is atmospheric ()nn =)ns =P = 0). At the upper and lower
die walls (Z1Z3 and Z6Z10), no slip applies. A fully developed plug �ow travelling with the
wire, is imposed at the out�ow Z4Z5. The lower domain boundary, Z3Z4, corresponds to the
wire that moves under a prede<ned wire speed.

For this case, the characteristic length is selected as the coating length, R2, and the charac-
teristic velocity is associated with the wire speed, Vwire. The die converging angles at Z3, Z7

and Z8 are �(24◦), �(17◦) and !(24◦), respectively. A wire radius of 0.09 units is taken here,
the die length is three units, inlet and outlet hydraulic radii at location Z1Z10 and Z4Z5 are
0.5 units and 0.2 units, with land length equal to 0.05 units. The polymer melt enters the die
geometry with annular velocity pro<le Vz(r) (see Reference [9]). By comparing the analytical
and numerical solutions for velocity and stress at the die-exit, the accuracy of the solution
may be assessed. For fully developed steady simple shear �ow, the applied inlet boundary
stresses �ij(r), within the annular pressure-driven �ow, can be evaluated as:

�rz =
�1f#̇

f2 + (We#̇)2�(2 − �)
(25)

�rr =
−�We#̇

f
�rz (26)

�zz =
(2 − �)We#̇

f
�rz (27)

where f is the PTT model function of Equations (5)–(7). The azimuthal stress at the inlet
vanishes. In each model instance, by substituting Equations (25)–(27) into the expressions for
the PTT functions, Equations (5)–(7), the parameter f may be re-expressed in the following
form:

linear model: f = 1 +
2�(We#̇)2(1 − �)

f2 + (We#̇)2�(2 − �)
(28)

quadratic model: f = 1 +
2�(We#̇)2(1 − �)

f2 + (We#̇)2�(2 − �)
+

1
2

[
2�(We#̇)2(1 − �)

f2 + (We#̇)2�(2 − �)

]2

(29)

exponential model: f = exp
[

2�(We#̇)2(1 − �)
f2 + (We#̇)2�(2 − �)

]
(30)
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In this manner, non-linear algebraic expressions may be derived for the parameter f. Hence,
via a Newton iteration, these expressions may be resolved to identify f for each model,
appropriate for steady simple shear �ow. Once f has been determined, inlet stress boundary
conditions may then be gathered from Equations (25–27).

7. RESULTS AND DISCUSSION

7.1. Short-die, pressure-tooling

This short-die case is considered <rst, on the 288 element mesh of Figure 3(c) and unless
otherwise indicated, for the exponential PTT(1; 0; 0:99) model with We= 200. This is a pre-
cursor to the full problem speci<cation to simplify some of the many diKculties involved and
pinpoint a comparative investigation, removing the complexity associated with the die �ow
itself. The full case will therefore illustrate the in�uence of the die �ow upon the process.
There is an adjustment in �ow pro<le from entry to exit from a shear �ow to a plug �ow; see
also Reference [10]. A small reduction in pressure of 0.46 units occurs throughout the length
of the die, where the die length to exit gap width ratio is of the order 2:1. The pressure drop
across the �ow in this case reaches 0.46 units, corresponding to that over the die alone, and
the minimum pressure of −0:16 units, is observed close to the top surface die-exit. A dra-
matic increase in shear rate I2 to 31.35 units at the top die-exit boundary is observed, which
declines to zero immediately upon entering the jet region (see on). The level of extension
within the jet �ow region, is less than 0.05 per cent of that due to shear; which indicates the
relevant ranges of deformation with respect to Figures 1 and 2. All stress components peak
at the (upper) boundary die-exit region, with the dominant Tzz component reaching a value
of 0.041 units.

In Figure 4, pressure drop (Op) is charted along the wire, against various parameter set-
tings. Op for a range of We is plotted in Figure 4(a). Linear reductions in pressure before
the die-exit are observed, with We= 200 giving the smallest pressure di=erence. This peak
We-value is used in our further studies to suit industrial requirements, as mentioned above.
The most extreme level for initial pressure of 40 units corresponds to the Newtonian case
(We= 0): so that, with introduction of shear-thinning, Op declines, as one would anticipate.
Figure 4(b) illustrates the e=ects of variation in �1 on pressure for the exponential PTT
model. Reduction in �1 from 0.99 to 0.88 gives an almost 10-fold increase in pressure
drop. The three PTT models variants (linear, quadratic, exponential) all give similar pres-
sure pro<les over the length of the die and beyond (Figure 4(c)). The exponential PTT
variant provides a slightly lower pressure drop than that for the linear model. We con-
clude that Op is more sensitive to adjustment in We and �1, and less so to choice of
model.

In Figure 5, variation in shear rate at the top surface is examined. Figure 5(a) and (b)
correspond to the exponential PTT model. Higher We-values suppress the shear rate peaks
at the die-exit, values varying from 42.05 units for We= 1 to 28.9 units for We= 200. In
contrast, decreasing �1 from 0.995 to 0.88 achieves a 14 per cent reduction in the shear
rate spike, Figure 5(b). We particularly note the trends of Figure 5(c) for the linear PTT
model behaviour on the top surface. This plot suggests that the relatively constant (�at)
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Figure 4. Short-die: PTT model, pressure along the wire; variation with (a) We, Exp PTT(1,0,0.88),
(b) �1, Exp PTT(1,0,�1), We = 200, (c) PTT(1,0,0.99), We = 200, model.

elongational viscosity behaviour of Figure 2(b) is responsible for the oscillations in shear rate
pro<le at the die-exit region (lack of strain-softening), reaching a peak of 14.4 units. This
result clearly demonstrates the looming inadequacies of the linear PTT model to represent
such a �ow. Considerably smoother and more stable shear rate plots are reproduced with the
quadratic and exponential PTT models, Figure 5(d). Note here, that shear rate peaks are much
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Figure 5. Short-die: PTT model, I2 on top surface; variation with (a) We, Exp
PTT(1,0,0.88), (b) �1, Exp PTT(1,0,�1), We=200, (c) linear, PTT(1,0,0.99), We=200,

model, (d) PTT(1,0,0.99), We = 200, model.

higher than for the linear model, attaining values of up to 34.0 units for the quadratic PTT
model.

The e=ect of increasing We is to lower strain and shear rate peaks, as represented in
Table II for the exponential PTT model. This table corresponds to the shear rate pro<les
of Figure 5(a), where models with lower We produce higher shear rates at the top surface.
Modi<cation of �1, produces the strain and shear rates of Table III. Increase in �1 is seen to
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Table II. Short-die; exponential PTT (1,0,0.88), solution variation with We.

Solution We= 0 We= 1 We= 10 We= 100 We= 200
variables

I2 max 28.77 42.05 31.80 29.08 28.90
�̇ max 0.084 0.368 0.193 0.049 0.048
Op 39.81 10.89 5.69 4.89 4.84
Trz max 6.834 1.152 0.156 0.020 0.011
Tzz max 40.57 3.60 0.51 0.07 0.04
' 1.039 1.039 1.051 1.045 1.044

Table III. Short-die; exponential PTT (1; 0; �1), We= 200, solution variation with �1.

Solution �1 = 0:88 �1 = 0:99 �1 = 0:995
variables

I2 max 28.90 31.35 33.80
�̇ max 0.048 0.144 0.363
Op 4.841 0.462 0.263
Trz max 0.011 0.014 0.017
Tzz max 0.038 0.041 0.041
' 1.044 1.054 1.092

increase shear and strain rate maxima, reaching peaks of 33.8 and 0.363 units, respectively, for
�1 = 0:995. Across the three PTT models considered, shear rate maxima are of the order 102

greater than those in strain rate. Contrasting the quadratic and exponential versions in Table
IV, the lower shear rate peak at the die-exit is provided by the exponential PTT model. With
the exponential PTT model, the strain rate maxima of 0.144 units corresponds to that in the
free-jet.

Figure 6 quanti<es plots for shear stress, Trz, with variation in parameters across the top
surface. Trz-values are shown in Figure 6(a) for a range of We. The Newtonian, initially neg-
ative level, drops sharply to −25 units just prior to the die-exit, before an even more violent
recovery on entry to the free jet region. For We= 1, a much reduced negative entry �ow value
of Trz =−1 units applies within the die (shear-thinning e=ect). For We¿10, minor levels of
shear stress are generated. In Figure 6(b), higher �1-values provoke an increase in peak Trz-
values at the jet-entry region and beyond, with larger Trz within the die. Stress levels are low
due to the setting, We= 200. This behavior replicates the shear rate patterns of Figure 5(b).
Violent oscillations in the linear PTT pro<les prior to die-exit, Figure 6(c), are the result of
strain-hardening e=ects, with a peak value of 0.41 units at the pre-die exit. The strain-softening
behavior observed in Figure 2(b), stabilizes the Trz-pro<le for the quadratic and exponential
PTT models, Figure 6(d). Smooth pro4les result and, in this, we are able to distinguish the in-
5uence of strain hardening from softening. The Trz peak is larger for the quadratic case due to
the larger shear rates generated. I2 inlet values in Figure 5(d) for both models are about eight
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Figure 6. Short-die: PTT model, Trz on top surface; variation with (a) We, Exp
PTT(1,0,0.88), (b) �1, Exp PTT(1,0,�1), We=200, (c) linear model, PTT(1,0,0.99),

We = 200, (d) PTT(1,0,0.99), We = 200, model.

units. The shear viscosity log–log plots of Figure 1(d), justify the lower initial shear stress of
Figure 6(d).

For axial stress pro<les, Tzz, and variation with We, there is little change on the top
surface in Figure 7(a): a spike at die-exit occurs, which is magni<ed considerably below
We= 1, as Newtonian conditions are approached. At We= 200 in Figure 7(b), �zz-values
are low on the top surface and rise marginally with increasing �1. The decline at post-
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Figure 7. Short-die: PTT model, Tzz on top surface; variation with (a) We, Exp
PTT(1,0,0.88), (b) �1, Exp PTT(1,0,�1), We=200, (c) linear model, PTT(1,0,0.99),

We=200, (d) PTT(1,0,0.99), We = 200, model.

die exit follows the kinematics. The free jet is almost a pure extensional �ow,
so that,

Tzz − Trr ≈ �̇�e(�̇)

Hence, since Trr is relatively small in contrast to Tzz, Tzz depends practically upon the strain
rate �̇ (Table IV), which peaks in the free jet region. The Tzz maximum of the linear PTT
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Table IV. Short-die; PTT (1; 0; 0:99), We= 200, solution variation with model.

Solution Linear Quadratic Exponential
variables

I2 max 14.40 33.95 31.35
�̇ max 0.963 0.372 0.144
Op 0.613 0.509 0.462
Trz max 0.414 0.153 0.014
Tzz max 6.222 0.381 0.041
' 1.100 1.088 1.054

Figure 8. Short-die: PTT model, Tzz along the wire; variation with model, PTT(1,0,0.99), We = 200.

model, Figure 7(c), is due to the mild strain-softening e=ects (high �e) post-die exit. The ex-
ponential PTT Tzz-pro<le is consistently lower than for the quadratic PTT model, Figure 7(d),
which in turn, is lower than that for the linear model. This is due to the lower elongational
(and shear) viscosity at the deformation rates sustained by the exponential PTT, as opposed
to the quadratic (or linear) PTT model.

Axial stress along the wire drops with increasing We for these viscoelastic �uids due to
shear thinning. This is most prominent within the die. There is gradual decline in axial stress
for all �1-values, corresponding to the decrease in pressure along the die length. Stress levels
are generally low at We= 200. Variation across the three PTT models is covered in Figure 8.
This is most noticeable for the linear PTT model, whose peak of 0.32 units is double that
of the quadratic case, and 10 times greater than that for the exponential PTT instance. Peak
values occur for linear PTT just beyond the die, for quadratic PTT just within the die, and
barely at all for the exponential PTT model. The position is broadly similar in shear stress,
though at a level one order of magnitude lower.
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Figure 9. Short-die: PTT model, die swell on top free surface; variation with (a) We, Exp
PTT(1,0,0.88), (b) �1, Exp PTT(1,0,�1), We = 200, (c) PTT(1,0,0.99), We = 200, model.

Die-swell characteristics along the top free surface are presented in Figure 9. For the
exponential PTT model, results are plotted for a range of We-values in Figure 9(a). The
die-swell for We= 1 is lower due to the inhibiting in�uence of the shear and elongational
e=ects. Increasing �1 is seen to magnify the die-swell, Figure 9(b). This behaviour con-
<rms the observations made previously concerning strain rate, shear stress, and axial stress
(cf. Table III). For Figure 9(c), it is apparent that retention of the higher order terms
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Figure 10. Full-die: mesh patterns; (a) uniform mesh, 12× 74 elements, (b) biased coarse mesh, 6×114
elements, (c) biased medium mesh, 10× 168 elements, (d) biased <ne mesh, 15× 127 elements.

of the Taylor series expansions in the PTT model, produces a form that reduces the ex-
tent of the die-swell. For these three models, swelling projections are in�uenced by the
corresponding strain rates, shear stresses, and axial stresses produced (cf.
Table IV).

7.2. Full-die, pressure-tooling

The range of meshes of Figure 10(a)–(d) is used for the full pressure-tooling simulations.
The zonal re<nements are outlined in Table V, with greatest density and bias in the land and
die-exit regions. Results are plotted upon the biased <ne mesh, Figure 10(d), unless otherwise
speci<ed. With the prior knowledge of the above short-die study, the speci<c parameters
employed in this �ow are: Re= 10−4, We= 200, �1 = 0:99, � and � are unity and zero,
respectively.
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Table V. Full-die; mesh characteristics, sub-region zones.

Sub-region zone Uniform Biased Biased Biased
mesh coarse mesh medium mesh <ne mesh

1. inlet die 12 × 6 6 × 20 10 × 35 15 × 20
2. converging die 12 × 12 6 × 25 10 × 30 15 × 25
3. coating region 12 × 24 6 × 30 10 × 35 15 × 30
4. land region 12 × 8 6 × 3 10 × 8 15 × 5
5. jet region 12 × 24 6 × 36 10 × 60 15 × 47

Table VI. Full-die; exponential PTT(1; 0; 0:99), We= 200, solution variation with mesh re<nement.

Solution variables Uniform Biased Biased Biased
mesh coarse mesh medium mesh <ne mesh

I2 max; Top 209.9 213.0 383.0 461.7
I2 max; Bot 145.6 139.6 138.7 139.7
�̇ max 18.73 18.75 18.72 18.83
Op 10.49 10.09 10.00 10.18
Trz max 0.019 0.022 0.025 0.025
Tzz max 0.058 0.064 0.063 0.069
' 1.087 1.157 1.258 1.215

The nature of the �ow is such that there is rapid acceleration on approach to the die-exit.
There is an intense drop in pressure local to the land region, reaching a maximum pres-
sure drop of 10.17 units, accompanied by signi<cant shearing, reaching a peak of 461.72
units at the die-exit: a 15-fold increase to that obtained for short-die, pressure-tooling. Strain
rates are an order of magnitude lower than shear rates, and display peaks at melt-wire con-
tact and die-exit. At the melt-wire contact point, �̇ increases to 8.37 units. A rapid larger
rise occurs in the wire-coating section at die-exit. The second peak in �̇-pro<le at the top
boundary, characteristic for the full-die, reaches a height of 18.83 units in the post-die
exit region. The ‘shock impact’ as the �uid makes contact with the wire is most promi-
nent in the radial, shear and axial stress. Nevertheless, stresses within the die remain small,
the greatest axial stress of 0.069 units occurs at the free jet-entry
region.

From Table VI, maxima in I2 correspond to the biased <ne mesh at the top surface, although
there is little di=erence in solution values between meshes at the wire boundary. Swelling
ratio (') is increased by about 15 per cent from coarse to <nest meshes. This illustrates the
importance of suKcient mesh re<nement. Mesh re<nement has little in�uence on �̇ peaks,
pressure drop, and stress maxima, the greatest di=erences O(5 per cent) are observed in
pressure drop, with O(1 per cent) variation in other variables.

With respect to the pressure along the bottom surface for the exponential PTT model
of Figure 11(a), the higher initial die pressure and lower extrudate pressure illustrate the
inaccuracies of the uniform mesh in areas of high activity. The quadratic PTT pressure
value within the die, Figure 11(b), is 5 per cent higher than that for the exponential PTT
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Figure 11. Full-die: pressure on bottom surface; (a) exponential PTT, (b) on biased <ne mesh.

model, which con<rms the behaviour noted in the previous short-die, pressure-tooling re-
sults. Pressure di=erence for the exponential PTT model is 22 times greater for the full
case, above short-die pressure-tooling (comparing with Figure 4(c)). Note that, these drops
in pressure, essentially correspond to the same �ow zone, that is, over the land-region
jet-entry.

Shear rate along the top and bottom surface gave almost identical shapes for each mesh
tested, the only di=erence being the die-exit peaks. Hence, shear rate pro<les are represented
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Figure 12. Full-die: I2 on top and bottom surface, exponential PTT(1,0,0.99), biased <ne mesh;
(a) top surface, (b) bottom surface.

here for the <ne mesh only in Figure 12. The top surface I2 peak of 461.7 units at the die-exit
(Figure 12(a)) is 15 times greater than that for short-die, pressure-tooling (see Figure 5(d)).
Further data on I2 maxima may be found in Tables VI and VII. Results for the linear PTT
model are omitted from Table VII because it was not possible to gather stable solutions for
this model under such high shear and strain conditions, with such large We-values. There are
double (sudden shock) peaks of 124 and 140 units at the bottom surface of Figure 12(b).
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Table VII. Full-die; PTT(1,0,0.99), We= 200, solution variation with model.

Solution variables Quadratic Exponential

I2 max, Top 448.9 461.7
I2 max, Bot 140.4 139.7
�̇ max 18.76 18.83
Op 10.60 10.18
Trz max 0.408 0.025
Tzz max 1.639 0.069
' 1.224 1.215

Such peaks do not appear in the short-die case, and hence are a new feature, introduced as a
consequence of the melt-wire contact.

Top surface shear stress pro<les of Figure 13(a) demonstrate the ‘localized e=ects’ of
die-exit point discontinuity for a range of meshes. Shear stress in the free-jet region re-
duces and re�ects mesh convergence with re<nement. A violent jump in solution is ob-
served over the land region. Discrepancies between the various PTT model results for shear
stress are illustrated in Figure 13(b). Performance of the quadratic PTT model is notably
quite poor at the die-exit, with a sharp-decay in Trz on the approach to the die-exit, fol-
lowed by a leap to 0.4 units at the actual exit. Comparison of Trz between full-die and
short-die pressure-tooling instances reveals a 2.7 times increase in maximum value for the
quadratic PTT, and 1.8 times increase for the exponential PTT version (Tables IV and VII).
Such oscillations in Trz are magni4ed greatly with the linear PTT model, rendering sat-
isfactory convergence impossible. This is a re�ection of accessing these severe industrial-
level dynamical ranges. Shear stresses along the bottom surface (Figure 14(a)) reveal the
signi<cant in�uence of the moving-wire on the �ow at the melt-wire contact point (axial
position −1:1 units, indicated by arrow in Figures 12–l6), and the loss of accurate reso-
lution on the coarse mesh in regions of high activity (sharp gradients). The ‘<rst impact’
e=ect of the moving wire on the �uid at position −1:1 units is magni<ed in Figure 14(b).
This is evidence to the e=ects of the drag �ow. The shear stress pro<le for the exponen-
tial PTT model is on the other hand, minimally a=ected with oscillation in this contact
zone.

There is little di=erence in axial stress behaviour along the top surface, between the
various levels of mesh re<nement, Figure 15(a). That is, with the exception of local ad-
justment around the sharp geometric corners of the die and within the extrudate. Notably,
in the extrudate, Tzz remains positive on medium and <ne meshes, providing some resid-
ual stress to the coating, albeit small. The axial stress of the quadratic PTT model, Fig-
ure 15(b), is seen to peak at 0.65 units within the land region, some 4.3 times greater
than that for short-die, pressure-tooling (compare with Tables IV and VII). The exponential
PTT model Tzz-pro<le increases only slightly, with Tzz for full-case pressure-tooling, reach-
ing a magnitude 1.7 times larger than that for the short-die instance. Along the bottom
surface in Figure 16(a), the <ner mesh re<nement is observed to give smoother transitions
in axial stress. The characteristic ‘double peak’ pro<le at the melt-wire contact point and
die-exit regions is observed in the axial stress in Figure 16(b). Notably for the quadratic
model, the axial stress peak at the melt-wire contact point exceeds that at die-exit and is
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Figure 13. Full-die: Trz on top surface; (a) exponential PTT, (b) on biased <ne mesh.

followed by a sharp relaxation on the approach to the land region, upon which a more
sustained maxima forms. Again, the exponential PTT model provides smoother damped re-
sults, much reduced in magnitude, than those for the quadratic case. Hence, along the wire,
there is a 10-fold increase in values for the quadratic PTT model observed from short
to full-die pressure-tooling. For the exponential PTT model, correspondingly, there is little
change.
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Figure 14. Full-die: Trz on bottom surface; (a) exponential PTT, (b) on biased <ne mesh.

Die-swell pro<les along the top free surface increase progressively with mesh re<nement,
cf. Figure 17(a). This demonstrates the need for serious care and attention to suKcient mesh
re<nement, if accurate die-swell predictions are required. The <ne biased mesh provides such.
Quadratic and exponential PTT die swell projections of Figure 17(b) show little variation,
due to the intensity of mesh re<nement employed on the biased <ne mesh. The swelling
ratio corresponding to the exponential PTT model is 15 per cent larger than that for short-
die pressure-tooling. A similar observation holds likewise for the quadratic PTT model, there
showing a 14 per cent di=erence (Tables IV and VII).
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Figure 15. Full-die: Tzz on top surface; (a) exponential PTT, (b) on biased <ne mesh.

8. CONCLUSIONS

Overall, the short-die pressure-tooling study indicated solution variation with parameters �1

and We, and response of various PTT models. Ranges of shear and extension rate were of
order 102 and 10−1, respectively. The linear, quadratic and exponential PTT models were
computed for the short-die, and demonstrate the in�uence of shear and extensional viscosity
variations. For short-die �ow, there was no melt-wire sudden contact and smooth solutions
were established on the wire at the die-exit. For the full-die study, equivalent solution trends
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Figure 16. Full-die: Tzz on bottom surface; (a) exponential PTT, (b) on biased <ne mesh.

are established with parameter adjustment in �1 and We. Stable solutions were only avail-
able for the strain-softening models of quadratic and exponential PTT form. Ranges of shear
and extension rate rose above the short-die case to orders 103 and 101, respectively. For
dimensional equivalents, one must scale by O(103).

For the short-die tooling, the major observations are summarized as follows. Maximum
shear rates arise at die-exit, top-surface, whilst for extension rates they lie within the free-
jet region. Such maxima in shear rate are suppressed with increasing We, but increase with
increase of �1. The corresponding situation for strain rates is more marked, but displaying
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Figure 17. Full-die: die swell on top free surface; (a) exponential PTT, (b) on biased <ne mesh.

similar trends to shear rate. Also, increasing �1 is seen to magnify die-swell. With adjustment
of model, (linear, quadratic to exponential) maxima in shear rates increase, whilst they con-
sistently fall for strain rates. Smooth solution pro<les result for quadratic=exponential PTT, in
contrast to those for the linear PTT. This distinguishes the in�uence of strain-hardening from
softening and its e=ect upon numerical stability. Strain-hardening e=ects are responsible for
the oscillations (around die-exit) with the linear PTT model top-surface pro<les in variables
I2; Trz and Tzz. Shear-thinning and strain-softening stabilize the position for quadratic and
exponential PTT model variants, rendering stable numerical solutions. Due to shear-thinning
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at the larger We-values, stress levels almost vanish. Axial stress maxima at top surface are
due to mild strain-softening. Along the wire, axial stress peaks occur beyond the die for linear
PTT, just within the die for quadratic PTT and practically vanish for exponential PTT. Similar
comments apply for shear stress.

For the full-die tooling, solution oscillations, mainly around the die-exit singularity, are
greatly magni<ed with the linear PTT model and prevent convergence at industrial-level de-
formation rates. Shear rate maxima on the top surface occur over the land-region, and in
particular, peak at the die-exit. The level is some 15 times larger than that for the short-die.
Shear rate maxima on the wire are lower than that at the top surface, by a factor of three.
The double (sudden shock) peaks in shear rates at the bottom surface for full-die �ow, do
not appear in the short-die case. These are a new feature, introduced as a consequence of the
full-die and melt-wire contact. There is a double peak along the wire, with the die-exit value
being marginally larger than that at melt-wire contact. Extension rate maxima are lower than
shear rates by one order, but have increased 100-fold from the short-die case. Extension rates
peak at the melt-wire contact and across land=die-exit region. The maximum corresponds to
the die-exit. The pressure drop across the �ow is almost entirely con<ned to the land-region,
and is magni<ed some 22 times over that for the short-die.

The behavior in stress for full-tooling reveals the prominent ‘shock impact’ as the �uid
makes contact with the wire. The largest axial stress arises within the free jet-entry region.
For the quadratic PTT model, stress along the bottom surface is greatly in�uenced by the drag
�ow e=ects imposed on the �uid by the moving wire. For the exponential PTT model, the
corresponding stress behaviour is, on the other hand, only marginally a=ected by oscillations in
this contact zone. Greater mesh re<nement is seen to give smoother transitions of axial stress
along the bottom surface. For the quadratic PTT model, the axial stress peak at the melt-wire
contact point exceeds that at die-exit, and is followed by a sharp relaxation on the approach to
the land region. Thereupon, a more sustained maxima forms giving, the characteristic ‘double
peak’ pro<les. The exponential PTT model is again seen to provide smoother, more damped,
axial stress variations than occur for the quadratic case. It is for the reasons expounded above
that we would advocate the use of the full exponential model in wire-coating, with appropriate
selection of parameters to suit the rheology of the materials in question, as required. These
<ndings would re�ect industrial experience on measurable quantities such as pressure drop
and estimates of deformation rates for at least some materials (see Reference [37]). Die-swell
pro<les along the top free surface increase progressively with mesh re<nement, demonstrating
mesh convergence. The swelling ratios for the quadratic and exponential PTT models are 15
per cent higher than that observed for short-die tooling. Hence, the in�uence of the die �ow
itself is exposed.
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